

2/2-Way Solenoid Control Valve

- Made for custom engineered applications
- DN 0.8 ... 2.0 mm
- 1/8", sub-base or custom engineered armature

Type 2861 is an extremely compact solenoid control valve and is available with an orifice up to 2mm. It is based on the standard version of Type 2871 (see datasheet). It is used as an actuator in closed control loops (pressure, flow, temperature, etc.). Compared with the standard version, the valve is essentially of simpler construction and assembly and testing procedures are optimized, easing high volume series production with shorter delivery times. Please follow the instructions for a customised design on page 5 of this datasheet.

Circuit function A

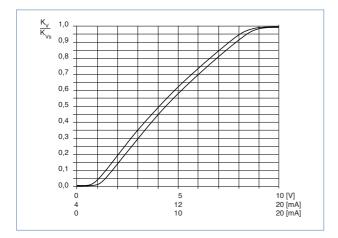
direct acting 2-way solenoid control valve, normally closed

Valve control takes place through a PWM signal ¹⁾. The duty cycle of the PWM signal determines the coil current and hence the position of the plunger.

The Bürkert control electronics Type 8605 (see relevant datasheet) converts an analog signal to a reference value corresponding to the valve type PWM signal and provides additional functions such as temperature compensation (coil heating), ramp function and the adjustment of min. and max. duty cycle/coil current for the control range.

Please note the sizing comments for such a control valve on page 2.

Technical Data - Valve					
Body material	Brass, stainless steel				
Seal material	FKM, EPDM on request Neutral gases, liquids on request 012 bar ²⁾ -10 +90 °C max. +55 °C				
Medium					
Pressure range					
Medium temperature					
Ambient temperature					
Power supply	24 V DC				
Max. current	220mA (at 24V-hold)				
Power consumption	5 W				
Duty cycle	100% continuously rated 800 Hz Sub-base , G 1/8, NPT 1/8, others on request				
PWM control frequency					
Port connection					
Electrical connection	Cable plug Type 2507, Form B industrial standard Item no. 423 845				
Installation	As required, preferably with actuator in upright position				
Typical control data 3)					
Hysteresis	< 5%				
Repeatability	< 1.0 % of F.S.				
Sensitivity	< 1.0 % of F.S.				
Span	1:25				
Protection class - valve	IP65				


¹⁾ PWM pulse-width modulation

 $^{^{\}scriptscriptstyle 2)}$ Pressure values [bar]: Measured as overpressure to the

atmospheric pressure, orifice further depends on nominal pressure ³⁾ Characteristic data of control behaviour depends on process conditions

burkert

Characteristics of a proportional valve

Advice for valve sizing

In continuous flow applications, the choice of appropriate valve size is much more important than with on/off valves. The optimum size should be selected such that the resulting flow in the system is not unnecessarily reduced by the valve. However, a sufficient part of the pressure drop should be taken across the valve even when it is fully opened.

Recommended value: Δp_{valve} > 25 % of total pressure drop within the system

Otherwise, the ideal, linear valve curve characteristic is changed.

For that reason take advantage of Bürkert competent engineering services during the planning phase!

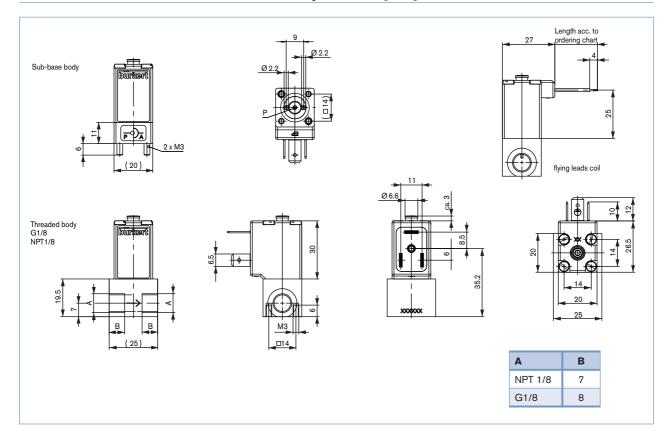
Determination of the k, value

Pressure drop	k _v value for liquids [m³/h]	k _v value for gases [m³/h]	
Subcritical $p_2 > \frac{p_1}{2}$	$= Q \sqrt{\frac{\rho}{1000 \Delta p}}$	$=\frac{\mathbf{Q}_{N}}{514}\sqrt{\frac{T_{1}\rho_{N}}{p_{2}\Deltap}}$	
Supercritical $p_2 < \frac{p_1}{2}$	$= Q \sqrt{\frac{\rho}{1000 \Delta p}}$	$=\frac{Q_{N}}{257p_{1}}\sqrt{T_{1}\rho_{N}}$	

k_v	Flow coefficient	[m ³ /h]
Q_N	Standard flow rate	$[m_N^3/h]$
p_1	Inlet pressure	[bar] ⁶⁾
p_2	Outlet pressure	[bar] ⁶⁾
Δp	Differential pressure p ₁ -p ₂	[bar]
	D "	Fi / 2

- $^{4)}$ measured for water, $\Delta p = 1$ bar, via the device
- 5) Standard conditions at 1.013 bar³⁾ and 0 °C (273K)
- 6) Absolute pressure

Standard orifice


Circuit function	Orifice [mm]	Port	k _{vs} value water [m³/h] ⁷⁾	O _{Nn} value [I/min] ⁸⁾	Nominal pressure ⁹⁾ [bar]
А	0.8	sub-base FK01	0.018	19	12
A		G 1/8	0.018	19	12
T T N		NPT 1/8	0.018	19	12
	1.0	sub-base FK01	0.027	29	10
		G 1/8	0.027	29	10
		NPT 1/8	0.027	29	10
	1.2	sub-base FK01	0.038	41	8
		G 1/8	0.038	41	8
		NPT 1/8	0.038	41	8
	1.6	sub-base FK01	0.055	59	6
		G 1/8	0.055	59	6
		NPT 1/8	0.055	59	6
	2.0	sub-base FK01	0.090	97	3
		G 1/8	0.090	97	3
a) Q _{Nn} value: Flow rate for 9) Pressure data [bar]: O	r air with inle verpressure w	NPT 1/8 measured at +20 °C and 1 bar pret pressure of 6 bar, 1 bar pressure ith respect to atmospheric pressure.	e differential and	+20 ℃.	
® Q _{Nn} value: Flow rate for Pressure data [bar]: Over the Please use page 5 Further version Material Other seal materials	r air with inle	measured at +20 °C and 1 bar priting the pressure of 6 bar, 1 bar pressure of 6 bar, 1 bar pressure. The respect to atmospheric pressure. The tasheet to inquire about year.	essure differentia e differential and	al over a fully op +20 °C.	ened valve.
® Q _{Nn} value: Flow rate for Pressure data [bar]: Over the pressure data page 5 Please use page 5 Further version Material	r air with inle rerpressure w of this da ns on re	measured at +20 °C and 1 bar priting the pressure of 6 bar, 1 bar pressure of 6 bar, 1 bar pressure. The respect to atmospheric pressure. The tasheet to inquire about year.	essure differentia e differential and	al over a fully op +20 °C.	ened valve.
Please use page 5 Further versio Material Other seal materials Valve body with speci	r air with inlerer repressure work of this da a second record and a second record reco	measured at +20 °C and 1 bar priting the pressure of 6 bar, 1 bar pressure of 6 bar, 1 bar pressure. The respect to atmospheric pressure. The transfer to inquire about yellows the properties of the properties of the pressure. The pressure of the pressure	essure differentia e differential and	al over a fully op +20 °C.	ened valve.
Please use page 5 Further versio Material Other seal materials Valve body with specific, power setti Other operating voltage.	r air with inlerer repressure work of this da a second record and a second record reco	measured at +20 °C and 1 bar priting the pressure of 6 bar, 1 bar pressure of 6 bar, 1 bar pressure. The respect to atmospheric pressure. The transfer to inquire about yellows the properties of the properties of the pressure. The pressure of the pressure	essure differentia e differential and	al over a fully op +20 °C.	ened valve.

 ⁷⁾ k_{vs} value: Flow rate value for water, measured at +20 °C and 1 bar pressure differential over a fully opened valve.
 ⁸⁾ Q_{ho} value: Flow rate for air with inlet pressure of 6 bar, 1 bar pressure differential and +20 °C.
 ⁹⁾ Pressure data [bar]: Overpressure with respect to atmospheric pressure.

Further versions on request

Dimensions for sub-base and threaded body versions [mm]

Note

Design data for custom engineered solenoid control valves

		Note You can fill out the fields directly in the PDF file in the printing	
Design data for custom engineered solenoid co	ontrol valves	the fields directly	
Please fill out this form and send to your local Bürkert	Sales Centre* with your inquiry or order	in the PDF in before printing out the form.	
Company	Contact person	Odi	
Customer No	Department		
Address	Tel./Fax		
Postcode/Town	E-mail		

= Mandatory fields			Quantity		Requested delivery date
Process data					uate
Medium					
State of medium		liquid	ga	seous	
Medium temperature	[°C		
Maximum flow rate	Q _{nom} =		Unit:		
Minimum flow rate	Q _{min} =		Unit:		
Inlet pressure at nominal operation	p ₁ =		barg		
Outlet pressure at nominal operation	p ₂ =		barg		
Max. inlet pressure (nominal pressure)	p _{1max} =		barg		
Ambient temperature	[°C		
Additional specifications					
		¬ _			
Body material		Brass	Stainles	s steel other	
Seal material		FKM	other		

Note Please state all pressure values as overpressures with respect to atmospheric [barg].

To find your nearest Bürkert facility, click on the orange \rightarrow

www.burkert.com

In case of special application conditions, please consult for advice.

Subject to alteration. © Christian Bürkert GmbH & Co. KG

1202/0_EU-en_00895217